

Physics-reinforced Deep Learning for Fast Chemical Sensing

S Chandra Mouli, Xin Jin, Muhammad A. Alam, Bruno Ribeiro Department of Computer Science/ECE, Purdue University, West Lafayette IN

I. Motivation

- Newly deployed chemical sensors can take a long time to saturate (due to slow chemical processes).
- Task : Predict future sensor readings (at saturation) given initial readings

Why combine physics and deep learning? Physics models cannot predict accurate transients

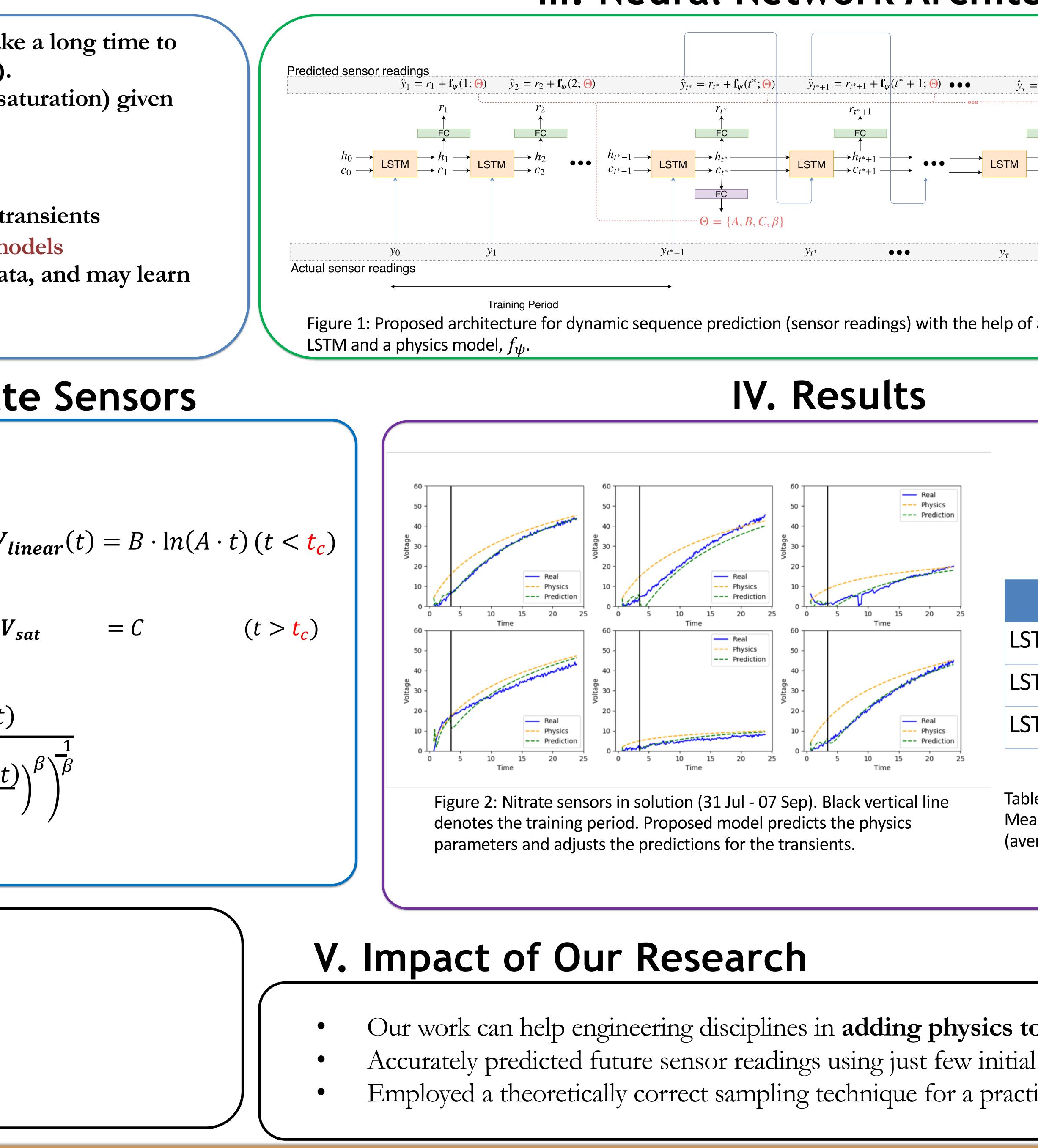
- \Rightarrow need deep learning models
- DL methods require large amounts of data, and may learn spurious patterns in data

 \Rightarrow need physics models

II. Physics Model for Nitrate Sensors

<u>Compact Physics Model</u>

$$V_{linear}(t) = \frac{kT}{q} \cdot \ln\left(D \cdot \frac{t}{t_0}\right)(t < t_c) \longrightarrow V_{l}$$


$$V_{sat} = \frac{kT}{q} \ln \left(C_1 \frac{n_0 h^2}{\kappa} \right) + C_2 \quad (t > t_c) \longrightarrow V$$

$$V_{ana}(t) = \frac{V_{linear}(t)}{\left(1 + \left(\frac{V_{linear}(t)}{V_{sat}}\right)\right)}$$

Collaborators:

III. Neural Network Architecture

Our work can help engineering disciplines in adding physics to deep learning models Accurately predicted future sensor readings using just few initial hours of readings Employed a theoretically correct sampling technique for a practical data collection procedure.

$= r_{\tau} + \mathbf{f}_{\psi}(\tau; \Theta)$ $\stackrel{r_{\tau}}{\rightarrow} \stackrel{h_{\tau}}{\rightarrow} h_{\tau}$ $\rightarrow c_{\tau}$	 Predict physics parameters at time t* (initial training period). Compute physics predictions and residuals. NN residuals r_t decay with time t; use only Physics model at saturation Horizon τ sampled using Russian Roulette technique. Allows for variable length sequences 	

Methods	RMSE
STM ($\tau = 10$)	181.5
STM-Physics ($ au = 10$)	136.9
STM-Physics-RR (E[τ] = 10)	80.3

Table 1: Nitrate sensors in solution (31 Jul - 07 Sep). Root Mean Square Error (RMSE) for the all the methods (averaged over 5 runs).

